The “Why” Behind Applying AI in Radiology

Reading Time: 7 minutes read

Carestream accelerates delivery of AI features that help improve patient outcomes and patient care.

Table of contents

There are numerous technologies and technical terms related to artificial intelligence (AI) that  can distract some people from the reasons behind the pursuit of AI solutions. At Carestream; however, we are crystal clear on why we are applying artificial intelligence to our medical imaging solutions. For us – and the customers we serve in radiology – the “why” behind AI is improving clinical outcomes and patient care, and creating more space and time for human interaction.

AI’s role in improving clinical outcomes

An accurate medical diagnosis is the first step in putting a patient on a treatment plan that will help improve their health and/or quality of life. Often, imaging is the first step to making an informed diagnosis.

Medical images are quantifiable. They can either prove or disprove that something is wrong, and both results are equally valuable. And the amount of quantifiable information within a digital X-ray is tied directly to the quality of the image. 

That is why Carestream is intent on providing as much detail as possible in a digital X-ray – at the lowest possible dose – so that radiologists have the information they need to make a confident diagnosis. Our artificial intelligence solutions play an important role in delivering on this goal. For example, our Eclipse Imaging Intelligence capabilities deliver superb image quality and unrivaled diagnostic confidence with AI, proprietary algorithms and advanced image-processing capabilities.  

Additionally, our Bone Suppression software leverages artificial intelligence to suppress the appearance of bone to enhance the visualization of soft tissue — while requiring no additional exposure to the patient. “Removing” the bone from the image gives the physician a clearer image of the area of concern, and helps inform their assessment of the pathology.

Carestream's use of AI provides better image quality for radiologists to make confident diagnosis.
Carestream is leveraging Artificial Intelligence to provide as much detail as possible in a digital X-ray – at the lowest possible dose – to help improve clinical outcomes.

In medical imaging, the goal of capturing the most information possible in an image must be balanced with the need to limit excessive radiation dose. Our AI-powered Smart Noise Cancellation (SNC) software advances this objective: enabling our customers in healthcare to lower radiation dose without a loss in image quality when compared to our standard image processing.

We are also applying AI to improve the process for capturing precise, quality images. Mistakes can be made in the image capture process for several reasons, including incorrect positioning of the patient and/or the system. That’s why Carestream is applying AI to automate these steps in the image acquisition process.

Our AI-based Smart DR Workflow enables a more precise capture of the anatomy  needed to make a proper diagnosis. In addition to helping radiology teams capture the best – and most quantifiable image possible – the automation also makes the process more efficient. This gets diagnostic images into the hands of the radiologists and physicians as quickly as possible so that they can begin a course of treatment for their patients.

Getting the image captured properly the first time also reduces the need for X-ray retakes, thus and limiting unnecessary radiation exposure. As you can see, Carestream’s AI software can play a considerable in improving clinical outcomes by delivering superb image quality at the lowest possible dose; and bringing precision to the image capture process.

AI’s role in improving the human experience

Carestream’s AI software is also designed to improve the patient experience by creating more space and time for human interaction.

The image capture process is an interesting juxtaposition of leading-edge technology – like our AI-powered SNC – and a very real, and very interactive, human process. If you’ve ever had an X-ray, you know that it is a human-intensive experience. You were likely greeted by a radiologic technologist who brought you to the imaging room and explained the process to you.  Perhaps he or she physically guided you into the right position.

I mentioned earlier that the automation enabled by our AI-based Smart DR Workflow allows a radiologic technologist to perform an exam in less time. Spending a minute or two less on a cold hard imaging table might not matter much to a patient with a fractured arm. However, having to hold a difficult position for a minute or two less can be significant to a patient with a painful injury, or to someone who has anxiety or confusion about the procedure.

Let’s not forget the other human in the imaging equation: the radiologic technologist. The AI workflow features give technologists added confidence that they are capturing the best image possible that will help advance the patient’s care. Bringing artificial intelligence (automation) to the process also frees up radiologic technologists to focus on one of the meaningful parts of their job – interacting with the patient. Perhaps they are freed up to hold an elderly patient’s hand for a minute longer. This small but meaningful human interaction also can improve the patient experience.

Accelerating delivery of AI applications for radiology

Carestream’s “why” for applying AI to radiology is to help improve clinical outcomes and patient care. Now let’s delve in the “how.” In the simplest of terms, machine learning is a branch of AI that focuses on the use of data and algorithms to imitate the way that humans learn, gradually improving their accuracy. Like humans, the more data that is ingested, the more the algorithm learns. In the world of medical imaging, the “data” is X-ray images. In order to develop the smartest and most reliable AI applications possible, we train our machine learning algorithms on thousands of de-identified diagnostic images provided through agreements with our customers.

As you can imagine, this requires massive computing power and time. That is why we entered into a strategic partnership with HPE GreenLake to leverage their enterprise-grade cloud service for machine learning (ML Ops platform).

The platform enables an accelerated workflow for research, including testing AI models on clinical data, getting faster feedback, and deploying better solutions. Case in point: we had a significant reduction in time to execute training runs for our AI-driven Smart Noise Cancellation solution: from 60 hours to 16 hours.

What is the connection between the HPE platform (the “how”) and our “why?” It accelerates our delivery of AI-powered solutions that can help our healthcare customers to impact patients’ care. Using the HPE platform also frees up our imaging scientists to focus more time on creating solutions for our customers while spending less energy on building the “plumbing” needed for AI solutions creation. 

Our use of the ML-Ops platform is in its formative stage at the moment. As we expand the use of AI techniques to meet our customers’ growing clinical and operational needs, we will continue to bring in more researchers, engineers, and clinicians to create these solutions. We believe that we are just scratching the surface of how AI and machine learning can help improve patient outcomes and patient care – and that is Carestream’s ultimate “why”.

Dharmendu Damany is the Chief Technology Officer at Carestream Health.

Learn more:

Applying AI in Radiology to Optimize Workflow

Smart Noise Cancellation Clinical Reader Study


This site uses Akismet to reduce spam. Learn how your comment data is processed.